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Dynamic Behavior of Cracked Pipe Conveying Fluid with Moving 
Mass Based on Timoshenko Beam Theory 
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In this paper we studied about  the effect of the open crack and the moving mass on the 

dynamic behavior of simply supported pipe conveying fluid. The equation of motion is deriv- 

ed by using Lagrange's equation and analyzed by numerical  method. The crack section is 

represented by a local flexibility matrix connecting two undamaged pipe segments i.e. the crack 

is modeled as a rotational spring. The influences of the crack severity, the position of the crack, 

the moving mass and its velocity, the velocity of fluid, and the coupling of these factors on the 

vibration mode, the frequency, and the mid-span  displacement of the simply supported pipe are 

depicted. 
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Nomenclature 
ac : Depth of crack 

A : Cross-sectional area 

b : Half-length of crack 

C : Flexibility matrix 

E l :  Bending stiffness 

J ~ Strain energy density function 

Kr : Stress intensity factor (fracture mode I) 

Ke ~ Rotating spring coefficient 

k i Number  of segment 

L i Length of pipe 

m ~ Mass per unit  length of pipe 

m l  : F lu id  mass per unit  length of pipe 

mm~ Moving mass 

q : Deflection of pipe 

t~ ~ Thickness of pipe 
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u : Velocity of fluid 

U : Velocity of fluid, dimensionless 

v ; Velocity of moving mass 

w ~ Deflection of pipe, dimensionless 

0 : Half-angle of crack 

0* ~ Half-angle of crack, dimensionless 

tc ~ Shearing coefficient of cross-section 

~ Distance measured along pipe, dimension- 

less 

1. Introduction 

Cracks are present in structures due to various 
reasons. The detection and control of damage in 

mechanical structures are an important  concerns 

of engineering communities. When a structure is 

subjected to damage its dynamic response is var- 

ied due to the change of its mechanical charac- 

teristics. Our interesting issue is the effect of  an 
open crack on the structural response. And the 

effect of moving mass on the structures and the 

machines is an important problem both in the 

field of transportation and in the design of ma- 
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chining processes, And the fluid that flow inside 

the pipe acts as the concentrated tangential fol- 

lower force at the tip of a pipe, and exert a lot of 

influences on dynamic characteristic of a pipe. 

Therefore, dynamic behavior of fluid-conveying 

pipes has formed the subject of a large number 

of papers since the early 1960s. The transfer of 

energy between the flowing fluid and the pipe 

was discussed by Benjamin (1961). Sugiyama and 

Langthjem (1999) studied the dynamic stability 

of a cantilevered two-pipe system conveying dif- 

ferent fludis. Lee (1996) studied the dynamic res- 

ponse of a clamped-clamped beam acted upon 

by a moving mass. He analyzed the problem of 

the moving mass separating from the beam by 

monitoring the contact forces between them. A 

lot of studies about the dynamic behavior of the 

beam structure under the moving load and the 

moving mass was reported (Stanisic, 1985; Lee, 

1995; Yoon et al., 2003). Recently, Mahmoud 

(2002) used an equivalent static load approach 

to determine the stress intensity factors for a 

single- or double-edge crack in a beam subjected 

to a moving load. Lira et a1.(2003) conducted 

the nonlinear dynamic analysis of a cantilever 

tube conveying fluid with system identification. 

Chondros and Dimarogonas (1980) studied the 

effect of the crack depth on the dynamic behavior 

of a cantilevered beam. They showed that in- 

creasing the crack depth reduces the natural fre- 

quency of the beam. Ostachowicz and Krawczuk 

(1991) investigated the influence of the position 

and the depth of two open cracks upon the fun- 

damental frequency of the natural flexural vi- 

brations of a cantilever beam. To model the effect 

of the local stress in the crack, they introduced 

two different functions according to the symmetry 

of the crack. The dynamic characteristics of a 

cracked rotor supported on AMBs are studied; 

the effect of using optimal controller parameters 

on the dynamics of the active cracked rotor and 

the effects of crack on the control system are 

analyzed (Zhu et al., 2003). 

In this study, the crack effects on the dynamic 

behavior of the cracked pipe conveying fluid with 

the moving mass are investigated. That is, the 

influences of a crack, position of a crack and the 

velocity of the moving mass have been studied 

on the dynamic behavior of a simply supported 

pipe conveying fluid. The simply supported pipe 

conveying fluid has a circular hollow cross-sec- 

tion. The crack is assumed to be always open 

during the vibrations. 

2. The  Theory  and Formula t ions  

We consider a uniform pipe of length L ap- 

plying the Timoshenko beam theory. The system 

with a moving mass on the cracked simply sup- 

ported pipe conveying fluid is shown in Fig. 

1 (a), where m~ is the moving mass, v is the 

velocity of moving mass and u is the velocity of 

fluid flow. The flow velocity u is assumed con- 

stant, the fluid has a constant mass per unit length 

of pipe. And L is the total length of the pipe, x¢ 

is the position of the crack. Figure 1 (b) shows a 

circular hollow cross section of the cracked sec- 

tion. 0c and 2b are the crack depth (severity) 

and the length of a crack, respectively. Two equa- 

tions of motion are derived for the two parts of 

the pipe located on the left and on the right of the 

cracked section. 

2.1 The energy of a pipe and moving mass 

By using the assumed mode method, the lateral 

displacement y (x, t) of a simply supported pipe 

and rotation 0 (x, t) in xy  plane respectively, can 

be assumed to be as 

y(x ,  t ) :  Z q A . ( x ) q . ( t )  (1) 
n = l  

/ t  

8 (x, t) = ~ ~. (x) d. (t) (2) 
n = l  

where qn(t) and dn(t) are generalized coordi- 

nates, which are time dependent, /2 is the total 

number of the generalized coordinates. ~n(X) 

and ~n(x) are the spatial mode functions of a 

simply supported pipe when there is without the 

fluid and a moving mass (Zhu et al., 1999). 

q ~ ( x ) = B ~ s i n ( ~ - )  

[ n~rx \ 
¢~ (x) =cos k - E - ]  

(3) 
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(b) 
Geometry of the cracked simply supported pipe with the moving mass 

where 

mrL E1 I $ 2 = _ _  ~.2__ 
B . =  (n:r)2_b~s 2 , xAGL 2 , A L  2 

l+ (n~)2(fl +s 2) -~/(l + (n~)2(r2 + s2)2)2-4(n~)2fls2 
b~- 2r2S 2 

where G is the shear modulus of the pipe ma- 

terial, A is the cross-sectional area, E is the 

Young's modulus, and I is the moment of the 

inertia of the pipe cross-section. In addition, 
2(l+vp) 

x =  is a shearing coefficient of circular 
4 +  up 

hollow cross-section and vp is the Poisson's ratio. 

In Figure 1, the strain energy of the cracked 

pipe can be written as 

II ox I[ Io I I Idx 
V'=~IL'],3y. o | k  0 'GA]IOY'_ G // (4) 

l , 2 

where E I  and KGA mean the bending stiffness 

and the shear stiffness respectively. According 

to Okamura et a1.(1973), assume that a cracked 

member can be separated at the cracked section 

and that both portions can be connected by a 

spring with spring constant Ka, corresponding to 

the bending moment. In Eq. (4), the quantity 

A ,  dy dy 
Y ~ = d x  ~,=0- d x  x,=~ (5) 

represent the jumps in the rotation. The kinetic 

energy Tp of the pipe is given by 

I I -I FoAO Tp~-12k~_1~oL'[[~ILODI]l~I (6) 

where 0 is the mass density of the material. The 

kinetic energy of the moving mass can be ex- 

pressed as 

Tm=~ : =  

+2Vqn(t) q~(t) ~k(Xm) ~'~(Xm) (7) 
+O~(t) eL(xm) +v  2} 

where (.) denotes the a/~t, and (') represents 

the a/~x and k is number of the segments. Since 

the horizontal velocity of the moving mass is v, 

the horizontal displacement of the moving mass 

Xm is 

Xm=fm(t) = L t V  dt (O<-xm<-L) (8) 

2.2 The  work and energy  due to the f luid 

f low 

The kinetic energy of the fluid flow inside the 

pipe can be expressed as 

+ { ~.k (xl) 0. (t) }2 }dx~l (9) 
(xz=ut ,  O<xz<_L) 

The work of a follower force due to the fluid 

discharge is divided into two kinds of work, one 

is the work done by conservative force com- 

ponent, and the other is the work done by non-  

conservative force component. The work We due 
to the conservative component of a tangential 

follower force is (Yoon et al .  2003) 
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2 L~ 
w ~ = l E  Z(rn/uZ{qY~k(x / )q . ( t )}Zdx/ (10)  

Z. n=lk=ldO 

The work ~Wnc due to the non-conservative 

component of a follower force is 
/l 

Wnc = - Z m/u2{ (~;z (xe) ~.2 (x/) } q, (t) Sq. (t) =0 
n=l 

( l l )  

2.3 Boundary conditions 
The boundary conditions of this cracked sim- 

ply supported pipe are 

¢.2(L) = #x2 =0, ~l(Jcc)=¢.2(Xc) 

&2 &: , &3 

E10z¢.~(x~) 
¢.,(x~) - ¢~.~(x~) = K~ ~x ~ 

where 

&3 

¢.~(x)  =[ (~.l(X) " O ~ x < x ~  
[ ¢.z(x) " x ~ < x < L  

= j  ~.~(x) O ~ x < x ~  
¢.~(x) 1 ¢~.~(x) ' x ~ x ~ L  

(12) 

2.4 Crack modeling 
Consider the bending vibrations of a uniform 

Timoshenko beam in the plane, which is assumed 

to be a plane of symmetry for any cross-section. 

The crack is assumed to be always open. The 

additional strain energy due to the crack leads to 

flexibility coefficients expressed by the stress in- 

tensity factors. In addition, the crack produces 
a local additional displacement ui between the 

right and left sections of the crack. According 
to Castigliano's theorem in the linear elastic 

range, these i direction displacements u~ under 
the action of the force Pi are given by the fol- 

lowing expression, 

ue=-~ii / J (a) da (13) 

where J (a) is the strain energy density function. 
The function is 

J(a) E~-(Km)2 (14) 

where E * - = E / ( I - ~ )  for the plane strain and 

K,  is the stress intensity factor for mode of frac- 

ture L The local flexibility in the presence of the 

width 2b of a crack is defined by 

iF ( / [ / ' J ( a ) d a d z )  
Ci~- OP, OPj (15) 

for i = 1 ,  -.-, 6, j = l ,  -", 6 

The stress intensity factors for bending is given 

by (Liu et al., 2003) 

M 
KIM : ~ R Z t p - ~ F b  (Oe) ( 1 6 )  

where Km denotes the opening-type mode by 

bending moment. R - ( R o + R ~ ) / 2  is the mean 

radius, Oc is the half-angle of the total crack(the 

crack severity will be indicated by 8~/Jr as per- 

centage) and 

O~ 1.~ O~ ~'~ F~(Oc)=l+At[4.5967(~) + 2 . 6 4 2 2 ( ~ - ) ] ( 1 7 )  

where 

A t = ( 0 .  R \o.2~ 1 2 5 t - 0 . 2 5  ) 

/ R \0.25 
A , =  ~0.4~p-p - 3 . 0 )  

for 5 ~ t R  p -<10 

(18) 

for 10_< t~ -~20  

where tp is the thickness of the pipe. Substitu- 

ting equations (16) ~ (18) into equation (15), the 

flexible matrix due to the crack can be obtained. 

2.5 The equation of motion 

2.5.1 The dimensionless equation of motion 
By applying the Lagrange's equation to the 

work and energy functions, the system equation of 

motion is obtained. The following dimensionless 
parameters are introduced: 

x/ m ~n x ~ / = ~ - = u L ~ / r ,  t E/H 
- -L '  r - - ~ / - ~ - ,  M, = mL 

Xc __ mmL - 

(19) 
-m~LS-.-2 . - q  ~ l - m s  _ x ~ _ -  2 m- 

r - ~ f - v  , ~ - T '  1,1/-~, ~ , - T - - v L  ~-ff~-i r 

M K~L n=~GAL2 T=mU 
=E[-' "~ EI ' oI 

where ~ is v/L.  Therefore, the dimensionless 
equations of motion in matrix form are obtained 
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as follows : 

Mb'~'+Cbw + K b w = F b d  (20) 

M r d + K r d : F r w  (21) 

where (.) denotes the 3/3r,  the matrix of the 
Eqs. (20) and (21) can be written respectively as 

# 2 M, 2 

L~, 2 2 +M,/ dpnk<~i) d~.e+Mraqbnk(~,)} (22a) 

(22b) 

+ M = ~ - r  { ¢~k (Sin) } } 

p 2 iLl 

p 2 r L ~  

Mr = ~xffaJ0 #,z~ (~) d~ (23a) 

2 ~ d z ~nk ( t )  ..~ 2 
K r = ~ l ~ l T f  ( { ~ }  O{O,k($)} )d~ (23b) 

,a L/, 
F,--=QT~.]=K/ ¢;,~($) lk,~($)d$ (23c) 

2.5.2 The modal formulation 
The Eqs. (20) and (21) can be transformed 

into the following equation : 

M*//+K* ~ = 0  (24) 

where 

~ = [ W  d w d] r 

where I represents a unit matrix. For the com- 
plex modal analysis, it is assumed that ~ is a 

harmonic function of r expressed as 

~=ea~O (26) 

where A is the eigenvalue, and O is the corre- 
sponding mode shape. From the eigenvalues ob- 
tained from Eqs. (24) -- (26), the frequencies can 
be obtained. 

3. N u m e r i c a l  R e s u l t s  and  D i s c u s s i o n  

In this study, the dynamic behavior of the 
cracked simply supported pipe influenced by 
the moving mass, the crack severity 0* (=0e/a ' ) ,  
and the position of a crack are computed by the 
forth order Runge-Kutta method. To illustrate 
this response, the length of a pipe L=0 .8  m, out- 
side-radius Ro=0.1 m and inside-radius R~--- 
0.08 m were considered (E=2.1  x 10 n Pa, densi- 
ty=7860 kg/ma). The numerical results were ob- 
tained for the first mode of vibration. 

3.1 Results for mid-span deflection 
Figure 2 shows the dimensionless mid-span 

deflection for a cracked pipe conveying fluid 
with Mm=0.3 and U=0.5.  The crack position is 
3/8. Generally, the mid-span deflection of a sim- 
ply supported pipe is proportional to the crack 
severity. As the crack severity is increased, the 
position of  the moving mass that makes the maxi- 
mum mid-span deflection of the simply supported 

2.0x 10 ~ 

1 ,Ox lO  ~ 

• "o 0.0 

P 
i~ -1,OxlO6 

. 2 0 x l O  ~ 

Fig. 2 

--<~ e'=O 
.... "- ~ = 0.05 ~ _ ~ : ~ , ~  , '< 

--~-' ¢=0.12 F / / / ~ ' ~ "  " ~  '~\ "'~i ~', 

o.o o:4 o', 
Posilion of moving mass(~) 

Variation of mid-span deflection of a cracked 
pipe conveying fluid with moving mass ac- 
cording to crack severity (v=0.8 m/s, ~c = 
3/8) 
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pipe is moved to the rear bound of  the pipe. In 

0*=0.05, the maximum mid-span deflection of 

the pipe occurs at a distance of ~=0.71 from 

the left-hand support. In 0"=0.15,  the maxi- 

mum mid-span deflection of the pipe occurs at 

~=0.85. Figure 3 represents the variation of the 
mid-span deflection of a cracked pipe convey- 

ing fluid with moving mass according to the 

crack positions for u=0.8 m/s, U=0.5 .  Fig. 3 (a) 

and (b) are the mid-span deflection of the 

pipe when the crack severities are 0.08 and 0.12, 

respectively. These results mean that when the 

crack position is 0.5 its effect is the largest on the 

mid-span deflection of the pipe. Figure 4 shows 

the variation of the mid-span deflection of a 

cracked pipe conveying fluid with moving mass 

according to the velocities of fluid. The mid-  

span deflection of a simply supported pipe is pro- 

portional to the velocity of the fluid. In Fig. 4(a) ,  

the difference of maximum mid-span deflection 

of the pipe in the two case of U=0 .5  and U = 2  

is about 31.15%. In Fig. 4(b),  the mid-span 
deflection of the pipe appears on the one-direc- 

tion during the moving mass stay on the pipe. 

Because the velocity of moving mass is higher 

and the time staying on the pipe is shorter than 

those in Fig. 4 (b) respectively, we deduce the 

maximum mid-span displacement of the pipe 

occurs when the moving mass is leaving the pipe 

(Weaver et al., 1990). The variation of mid-  

span deflection of a cracked pipe conveying fluid 

2.0x10 ~ 
~ = 118 

? ....... ~, =0.25 

1.ox, o . . . . .  / 1 %  I 

. . . . .  ? I 
~, =0.75 E '  I '~;', 

',.~ 0.0 , ~  ........ i [ = 7 ' 8  / ,  o.,; Y I 

. . 1 , 0 x l O  -~ ' 1t 

.2.0xi0 -~ ., ~ . . . .  " i ~ , -- 
0.0 0.2 0.4 0.6 0.8 1.0 

Position of moving mass (~) 

(a) Crack severity (0")=0.08 

2.0xI06 
..... - "  ~ = 118 ~._~,~4~..~ 

.......... ~,o = 0.25 , ~ , ~ , ~ ,  
- - ~ -  ~ = 318 .?~'~" /)~ ' :~ , \. 

.... ~>- ¢'= 0 5 .__/(""'" i 
c • , , '  ~ "  ', \ ~ Y( 

.......  o=o. 5 / 
I~ . . . .  : 0 = 7 / 8  ,~:;' / '~',\ 

I \  ./,';"/ 
1.ox,ot \. 

20x106~ , ~ ~ i ~ , ~ , ~ , 
" 0.0 0.2 0.4 0.6 0.8 1.0 

Position of moving mass ( { )  

(b) Crack severity (0 ' )=0 .12  

Variation of mid-span deflection of a cracked 
pipe conveying fluid with moving mass ac- 
cording to crack position u=0.8 m/s) 

~.  1.0x10 -° 
.8 

o.o " 0  

.6 
- I .0x i0  ° 

-2.0x1( 

Fig. 3 

2.0x10 ~ / U = 0 ~-~ 

[ ..... " U = 0.5 • ,~,~e.~,. . .~- 

? 1.OxlO" I -.~,- u=l  : ' ; '~  

'8 0.o'~ . .(~/ ,: , k ,, 

[% . ; ; 7  =' , 

- I .o× Io  ° 2" 

~; -2.0x10 G ~:~c, cJ~: '  

.3.0xi0 ° l , ~ , ~ , f 
0.0 0.2 0.4 0.6 0.8 1.0 

Position of moving mass (~) 

( a )  y = O . 8  m / s  

2.0x106 

1.0xlO 6 
v 

g 

0.0 

-1.0x106 

z; .2.0x10O 

-3.0x10 6 

. . . .  U = O  

......... U = 0 . 5  

---~--  U = I  
- o  U = 2  

' 0' ' t 0.0 0 2  .4 0.6 0 8 t .0 

Position el moving mass (~,) 

(b) u=1.6 m/s 

Fig. 4 Variation of mid-span deflection of a cracked 
pipe conveying fluid with moving mass ac- 
cording to velocity of fluid (0*=0.08, ~c = 
3/8) 
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according to the moving mass is shown in Fig. 5. 
In curves the crack severity, the crack position 

and the velocity of the moving mass are 0.08, 

3/8 and 0.8 m/s, respectively. Totally, as the mov- 

ing mass is increased, the mid-span deflection of 

simply supported pipe conveying fluid is increas- 

ed. As the moving mass is increased, the position 

of the moving mass that appears the maximum 

mid-span deflection of the simply supported pipe 

is gradually moved to the rear bound of pipe. 

These are results by the coupling between the 

moving mass and the velocities of the moving 

mass. Figure 6 makes a comparison between 

mid-span deflection of Euler-Bernoulli beam 

2.0x10 ° 
....... -r, M =0,1 

? .... ~ '  M m = 0.3 

"~" 1.0x10 ~ - ' ~ -  M =0.5 

.£ M = 1,0 
• z 

/ " /  

4, \ ' 
-1.0x10 6 

U = 0 . 5  

, , I , I ,~, I ~ , I , 

-2.0x100. 0 0 2 0.4 0.6 0,8 

Position of moving mass ( { )  

Fig. 5 Variation of mid-span deflection of a cracked 
pipe conveying fluid according to moving 
mass (0*=0.08, ~e=3/8, v=0.8 m/s) 

2.0x10 e 

1.0xlO 

-6 
- 1 . 0 x l  0 

-2.0x10 
0.0 0.2 0.4 0,6 O.fl 1.0 

Position of moving mass (~,) 

Fig. 6 Comparison between mid-span deflection of 
Euler-Bernoulli beam and Timoshenko beam 
(O* =0.05, ~ec=3/8, v=0.8 m/s, M~=0.3) 

and Timoshenko beam. When the fluid velocity 
is 0.5, the difference of maximum mid-span 

deflection of the pipe in the two case of Euler- 

Bernoulli beam and Timoshenko bema is about 

9.77%. 

3.2 Results for frequency 
Figures 7 and 8 show the frequencies of a 

cracked pipe conveying fluid with the moving 

mass. In Fig. ~/(a), the frequencies of the simply 

supported pipe are in inverse proportion to the 

crack severity. Figure 7(b) represents the fre- 

quencies of a cracked pipe conveying fluid with 

the moving mass according to the variation of 

the crack position. When the crack position exists 

in the center of the simply supported pipe con- 

veying fluid, the frequency has the smallest value. 

1.2 

=o 1.0 
O "  
O~ 
¢. 

0.9 

0.0 

....... no crack 

.. ............ 0" = 0.08 /)~ 

\,,,, 0"=0.12 ~ , {  
• # Z  

i I i I l I , I I 

0.2 0.4 0.6 0.8 1.0 

Position o! moving mass (g) 

(a) variation of crack severity 

I .......... ,~= 118 .- ...... I 

I 
- - ~  ~ ,~=0.5 ~1 

....... ,~: = 318 

1.1 F ' - - . .  / 
.... -%. . i f + , t  

l 

I.L 

0.0 0.2 0.4 0.6 0.8 1.0 

Position of moving mass (~) 

(b) variation of crack position 

Fig. 7 Frequencies of a cracked pipe conveying fluid 
with moving mass (v=0.8 m/s) 
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The difference of frequencies of the cracked pipe 

in the two case of  ~c = 1/8 and ~c=7/8  is about 

6.89%. Figures 8(a) and (b) show the frequen- 

cies of a cracked pipe conveying fluid with the 

moving mass according to the variation of the 

moving mass and fluid velocity, respectively. In 

Fig. 8, the crack severity ~* is 0.08, the crack 

position ~ is 3/8, and the velocity of fluid U 

is 0.5. In Fig. 8(a),  as the moving mass is in- 

creased, the frequency of simply supported pipe 

conveying fluid is decreased. When the position 

of the moving mass exists in the center of the 

simply supported pipe conveying fluid, the dif- 

ference of frequencies of the cracked pipe in the 
two case of M n = 0  (without moving mass) and 

M,n=0.1 is about 7.06%. And the difference of 

frequencies of the cracked pipe in the two case 

1.3 
Natural frequency 1.2 

" ~  ~,r ~ ~  M =0.1 I 0.8 I 
-~- ~ M =0.5 I 

  7,ol 
0.6 

0.0 012 0.4 0.6 0.8 1.0 
Position of moving mass (~.) 

(a) variation of moving mass 

'i,3, ...... U=0 

• 1 ~ -  u = 1 . o  I 
"1.1 f • U = 1.5 

o >" ,i . 0  [(t- ""-." .~ . :-~-" ,~.~..::, 

0.9 I" "'":" ~ ":~/ "*""" ~'~: ~.: ........... ~.::~-:;~':~" y~" ~" 

0.7 ~ " ~ L , , ~ - - ~ , - ~  ~ r ~ e -  

0 . 6  ~ , ~ , ~ , , , , , 
0,0 0.2 0,4 0.6 0,8 1.0 

Position of moving mass (6) 

(b) variation of fluid velocity 

Fig. $ Frequencies of a cracked pipe conveying fluid 
with moving mass (0*=0.08, ~c=3/8) 

of M•=0.1 and Mm=0.3 is about 11.37%. In 

Fig. 8 (b), the frequencies of the simply supported 

pipe are in inverse proportion to the velocity of 

fluid. 

4. Conclusions 

In this paper, the influences of the crack se- 

verity and moving mass have been studied on 

the dynamic behavior of the cracked simply sup- 

ported pipe conveying fluid by the numerical 

method. The cracked pipe has been treated as 

two undamaged segments connected by a rota- 

tional elastic spring at the crack section. The 

stiffness of the spring depends on the crack 

severity and the geometry of the cracked section. 

The main conclusions are the following. 

(1) When the moving mass and the velocity 

of fluid are constant, the mid-span deflection of 

the cracked simply supported pipe is proportional 

to the crack severity. 

(2) When the crack position is 0.5, its effect 

is the largest on the mid-span deflection of the 

cracked simply supported pipe conveying fluid. 

(3) As the moving mass and the fluid velo- 

city are increased, the mid-span deflection of the 

cracked simply supported pipe conveying fluid is 

increased. 

(4) When the crack position exists in center of 

the pipe conveying fluid, its frequency has the 

smallest value. And totally, the frequencies of the 

simply supported pipe are in inverse proportion 

to the crack severity. 

(5) The frequencies of cracked simply support- 

ed pipe conveying fluid are in inverse proportion 

to the fluid velocity and the moving mass, respec- 
tively. 

These study results will contribute to the safety 

test and stability estimation of structures of a 
cracked pipe conveying fluid with the moving 

mass. 
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